If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+n=100
We move all terms to the left:
2n^2+n-(100)=0
a = 2; b = 1; c = -100;
Δ = b2-4ac
Δ = 12-4·2·(-100)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{89}}{2*2}=\frac{-1-3\sqrt{89}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{89}}{2*2}=\frac{-1+3\sqrt{89}}{4} $
| 3n+n^2=3304 | | 3-(a-2)=7a+15 | | 3n+n^2=1330 | | y=8.333333333-2 | | 3n+n^2=340 | | -4/7(3x-14)= | | 5s-42=43 | | 76-1x+17+4x+25+7x=180 | | 4x+15=8x-10 | | 4m+3+3m-3=6m+22 | | 64^3x=32^2+x | | 20+b=31 | | 11+t=17 | | X+25=c | | -4x+18=8x+72 | | 120=5x+1.5x^2 | | k-75=17 | | c-10=4 | | c+5+c+5=30 | | 60=p(-10) | | 3r-13=7(r+2)-4(r-7) | | 21+4z=61 | | 6=v19.2 | | 0.3x−3/5x+1.6=1.555. | | -4.9x^2-3.08x+5=0 | | 6x+5+8x-3=4x+2x+-2 | | 6x+12=-90 | | 2/3x+3/4=1/3x+3/4 | | 6x2-x-154=0 | | 5x+3(8-2*2)=15-(2-9) | | Y(2x-13)=6x-7 | | x-9=-35-x |